長崎県立高等技術専門校 平成26年度生 一般入校選考試験問題

数 学

注意事項

- 1 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて試験監督者に知らせなさい。
- 3 解答用紙には、解答欄以外に受験番号欄があります。受験番号を記入し、さらにその下のマーク欄にマークしなさい。正しくマークされていない場合は採点できない可能性があります。
- 4 問題冊子の余白は適宜利用してかまいません。
- 5 試験終了後、この問題冊子は回収します。

解答上の注意

- 1 解答は、解答用紙の解答番号に対応した解答欄にマークしなさい。その際、塗りつぶす方法については解答用紙のマーク例を参考にしなさい。
- 2 大問は全部で4問あり、1 ~ 3 は四者択一問題である。 ~ から選び、解答用紙にマークしなさい。
- 3 大問4については、 ~ から数字を選びなさい。 問題の文中の マ 、 ミム などには、特に指示がない限り、数字 ~ が入ります。 マ、ミ、ム、…の一つ一つは、これらの数字のいずれか一つに対応します。それらを解答 用紙のマ、ミ、ム、…で示された解答欄にマークして答えなさい。

例 マミ に20と答えたいとき、

解答 番号				解	答	相				
マ	1	•	3	4	5	6	7	8	9	0
111	1	2	3	4	5	6	7	8	9	•

受	験	番	号
			番

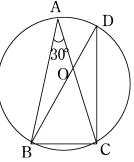
- - [1] $A = x^2 + 4x 3$, $B = \frac{1}{2}x^2 3x + 5$ のとき、 $2\left\{-A + 3\left(\frac{1}{2}A \frac{1}{3}B\right)\right\}$ の値を 求めなさい。解答番号は ア
 - 0 10x + 13

- ② 10x 13
- $3 \frac{5}{6}x^2 + 5x \frac{14}{2}$
- [2] $(2\sqrt{3}-3\sqrt{2})(3\sqrt{3}+2\sqrt{2})$ を計算しなさい。解答番号は**て**
 - (1) 6
- (2) $6-5\sqrt{6}$ (3) $-5\sqrt{6}$ (4) $-5\sqrt{5}$
- $6x^2+11xy-7y^2$ を因数分解しなさい。解答番号は **ウ** [3]
 - (1) (6x + 7y)(x y)

(2x + 7v)(3x - v)

(3) (2x - v)(3x + 7v)

- (4) (2x + y)(3x 7y)
- 1次関数 y=2x+1 に平行で点(1,1) を通る1次関数を求めなさい。 $\lceil 4 \rceil$ 解答番号はエ


 - (1) y=2x-1 (2) y=2x+1 (3) y=2x
- 0 v = 2x 2
- 不等式 $-8 \le 3x 5 \le 4$ を満たす整数xの値の個数を求めなさい。 [5] 解答番号はオ
 - **(1)** 3
- 2) 4
- 3 5
- 4 7
- [6] $\frac{2\sqrt{5}}{1+\sqrt{3}}$ の分母を有理化しなさい。解答番号は \mathbf{D}
 - ① $\sqrt{15} \sqrt{5}$ ② $-\sqrt{5}$ ③ $\frac{\sqrt{15}}{2}$
- $4 \frac{5}{2}$
- [7] $3x=2y(x \neq 0)$ のとき、 $\frac{x^2-y^2}{xy}$ の値を求めなさい。解答番号は キ

- ① -6 ② -5 ③ $-\frac{6}{5}$ ④ $-\frac{5}{6}$

2]次の 解答	各設問の解答 番号は ク	として正しい。 〜 シ	₺のを①~④の言	記号で答えなさい。			
	1]			····· (イ) が x=-	-1を解に持つとき、			
	(1)	次の各設問に答えなさい。 定数 <i>m</i> の値を求めなさい。解答番号は ク						
	(1)		$2\frac{3}{2}$	3 1	4 2			
	(2) 2次方程式(イ)の他の解を求めなさい。 解答番号は ケ							
		$\bigcirc -2$	② $\frac{1}{2}$	3 1	4 2			
			$-3mx + \frac{1}{4}m^2 + 2n$	n+4(ロ)に	ついて、次の各設問に			
		¥えなさい。 <i>m</i> = 2 のとき、2	次関数(ロ)のク	[*] ラフの頂点の座標	を求めなさい。			
	(1)	解答番号はコ		7 7 7 7 7 7 T				
		(0, -3, 0)	(-3, 2)	③ (3, −1)	(3,0)			
	(2)	2次関数 (ロ) Z い。解答番号は		点で交わるとき、 n	の値の範囲を求めなさ			
		① $m < -2$, $m >$	1	② $m < -1$, $m > 3$	2			
		3 -2 < m < 1						

(3) m=4 のとき、2次関数(ロ)はx軸と2点で交わる。このとき、この放物線

 右図のような半径 5 の円 \mathbf{O} に内接する \triangle \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{O} があり、 $\angle A = 30$ °とするとき、次の各設問に答えなさい。

辺BD が円の中心を通るとき、 ∠DBC の角度を $\lceil 1 \rceil$ 求めなさい。解答番号は ス

- ① 30° ② 45°
- 3 50°
- 40 60°

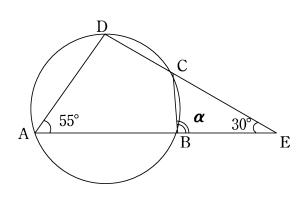
辺 BCの長さを求めなさい。解答番号は セ $\lceil 2 \rceil$

- **(1)** 3
- 2) 4
- 3 5
- **4**) 6

△BCD の面積を求めなさい。解答番号は ソ [3]

- ① 12 ② $\frac{25}{2}$ ③ $\frac{25\sqrt{2}}{2}$ ④ $\frac{25\sqrt{3}}{2}$

常に、 $\cos(180^{\circ}-\theta) = -\cos\theta$ の関係式が成り立つ。このことを知って、 $\lceil 4 \rceil$ cos150°の値を求めなさい。解答番号は タ


- $0 \frac{\sqrt{3}}{2}$ $0 \frac{1}{2}$ $0 \frac{1}{2}$

AB = ACのとき、 $\triangle ABO$ に着目する。辺 AB = l とするとき、 l^2 を [5] 求めなさい。解答番号は チ

- (1) $50-25\sqrt{3}$ (2) 25

- (3) 75 (4) $50+25\sqrt{3}$

- □ 全欄に当てはまる数字をマークしなさい。 解答は、この問題冊子の表紙を参考に記入しなさい。 解答番号は ~ ~ ✓
 - [1] 赤玉3個と白玉5個の入った袋から、同時に2個の玉を取り出すとき、 赤玉と白玉がそれぞれ1個ずつ出る確率は である。
 - [2] 円周上に異なる 6 個の点がある。これらの点を頂点とする三角形は、 **ニヌ** 個作れる。
 - [3] 右図において、∠αの角度はネノ °である。

